|
Полный текст html
Полный текст pdf
"Хвойные бореальной зоны" 2008г.,№3-4, с. 216-222
Непротеиногенные аминокислоты в тканях основных лесообразующих видов хвойных Сибири
Судачкова Н.Е., Милютина И.Л., Романова Л.И., Жданова К.О.
Институт леса им. В.Н.Сукачева СО РАН
660036 Красноярск, Академгородок, 50; е-mail: biochem@ksc.krasn.ru
В различных тканях надземной части и корней трех видов хвойных, произрастающих в Сибири - сосны обыкновенной, лиственницы сибирской и лиственницы Гмелина присутствуют 9 непротеиногенных аминокислот: ?-аминоадипиновая, ?-аланин, ?-аминомасляная, ?-аминомасляная, ?-аминомасляная (ГАМК), цистатионин, цитруллин, орнитин и оксипролин. Доля непротеиногенных аминокислот наиболее велика в камбиальной зоне и достигает 90 % от суммы свободных аминокислот. В этой группе соединений доминирует ГАМК, ее содержание в камбиальной зоне составляет 95 % от суммы непротеиногенных аминокислот, доля остальных не превышает 10 % в большинстве тканей и только в древесине обнаружено до 30 % цитруллина и 13 % ?-аланина. Соотношение непротеиногенных аминокислот отличается в разных тканях и зависит от гидротермических условий. Предполагается функция непротеиногенных аминокислот как стрессовых метаболитов и депонентов освобождающихся в процессе метаболизма аминогрупп.
Ключевые слова: сосна обыкновенная, лиственница сибирская, лиственница Гмелина, непротеиногенные аминокислоты, хвоя, луб, камбиальная зона, древесина
It was found 9 non protein amino acids: ?-aminoadipic acid, ?-alanine, ?-aminobutyric acid, ?-aminobutyric acid, ?-aminobutyric acid (GABA), cystathionine, citrulline, ornithine and hydroxyproline in the various tissues of Siberian conifers Pinus sylvestris L., Larix sibirica Ledeb., Larix gmelinii (Rupr.) Rupr.. The largest part of them was in the cambial zone and reached 90% of free amino acids sum. Into this group of compounds GABA dominated, its content in the cambial zone reached 95% of non protein amino acids sum. The part of the others non protein amino acids in most tissues don’t exceed 10%, only in the wood up to 30% of citrulline and 13% of ?-alanine were found. A ratio of non protein amino acid differs in various tissues and depends on hydrothermic conditions. It is supposed the function of non protein amino acids as stress metabolites and accumulators of free amino groups.
Key words: Pinus sylvestris L., Larix sibirica Ledeb., Larix gmelinii (Rupr.) Rupr.. non protein amino acids, needles, inner bark, cambial zone, xylem, wood
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
Гудвин, Т. Введение в биохимию растений / Т. Гудвин, Э. Мерсер. - М.: Мир, 1986. -Т.1. - 392 с.
Милютина, И.Л. Влияние эдафических условий на рост и обеспеченность метаболитами лиственницы Гмелина на мерзлотных почвах Центральной Сибири / И.Л. Милютина, Г.П. Семенова, В.В. Стасова, Н.Е. Судачкова // Лесоведение. - 1998. - № 5. - С. 3-9.
Судачкова, Н.Е. Влияние раневого стресса на состав свободных аминокислот и белков в тканях ствола сосны обыкновенной / Н.Е. Судачкова, И.Л. Милютина, Г.П. Семенова // Лесоведение. - 2001. - № 1. - С. 32-37.
Судачкова, Н.Е. Влияние стрессовых воздействий в ризосфере на состав свободных аминокислот в тканях сосны обыкновенной / Н.Е. Судачкова, И.Л. Милютина, Л.И. Романова // J. Stress Physiol. - 2007. - V.3, No 2. - P. 4-14.
Хавкин, Э.Е. Возрастные изменения свободных аминокислот и накопление g-аминомасляной кислоты в листьях бобовых растений / Э.Е.Хавкин // Физиол. растений. - 1964. - Т. 11, Вып. 5. - С. 862-866.
Brokaert, B. Plant defensins: novel antimicrobial peptides as component of the host defense system / B. Brokaert, F.R.G. Terras, B.P. Cannune, R.W. Osborn // Plant Physiol. - 1995. - V. 108, No 4. - P. 1353-1358.
Cohen, J. [beta] – Aminobutyric acid induces the accumulation phatogenesis related proteins in tomato (Licopersicon esculentum L.). Plants and resistance to late blight infection caused by Phytophthora infestans / J. Cohen, T. Niderman, E. Mosinger, R. Fluhr // Plant Physiol. - 1994. - V. 104, No 1. - P. 59-66.
Datko, A.H. Homocysteine biosynthesis in green plants / A.H. Datko, J. Giovanelli, S.H. Mudd // J. Biol. Chemistry. - 1974. - V.249, No 4. - P. 1139-1155.
Hodges, J.D. Amino acids in inner bark of loblolly pine, as effected by the southern pine beetle and associated microorganisms / J.D. Hodges, J. Baras, J.K. Mauldin // Can .J. Bot. - 1968. - V.46, No.12. - P. 1467-1472.
Kinnersley, A.M. Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants / A.M. Kinnersley, F. Lin // Plant Growth Regul. - 2000. - V. 32, No 1. - P. 65-76.
Lamport, D.T.A. Oxigen fixation into hydroxyproline of plant cell wall protein / D.T.A. Lamport // J. Biol. Chem. - 1963. - V. 238, No 4. - P. 1438-1440.
Martinez – Villaluenga, C. Kinetics of free protein amino acids, free non protein amino acids and trigonelline in soybean (Glycine max L.) and lupin (Lupinus angustifolius L.) / C. Martinez – Villaluenga, Y.-H. Kuo, F. Lambein, J. Frias, C. Vidal-Valverde // Euro. Fd. Res. Tech. - 2006. - V.224, No 2. - P. 177-186.
Raman, S. B. ?-Alanine, N-methyltransferase of Limonium latifolium cDNA cloning and functional expression of novel N-methyltransferase implicated in the synthesis of the osmoprotectant ?-alanine betaine / S. B. Raman, B. Rathiasabapathi // Plant Physiol. - 2003. -V.132, No.3. - P. 1642-1651.
Rastogi, R. Polyamine metabolism in ripening tomato fruit / R. Rastogi, P.J. Davies // Plant Physiol. - 1990. -V.94 , No 3. - P. 1449-1455.
Satoh, S. Alpha-aminoibutyric acid: a probable competitive inhibitor of conversion of 1- aminocyclopropane 1-carboxylic acid to ethylene / S. Satoh, Y. Esashi // Plant Cell Physiol. - 1980. -V.21 , No 6. - P. 939-949.
Satya Narayan, V. Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants / V. Satya Narayan, P. M. Nair // Phytochemistry. - 1990. - V. 29, No 2. - P. 367-375.
Schneider, S. Soluble N compounds in trees exposed to high loads of N: a comparison of spruce (Picea abies) and beech (Fagus silvatica) under field conditions / S. Schneider, A. Gebler, P. Weber, D. von Sengbusch, U. Hanemaann, H. Rennenberg // New Phytol. - 1996. - V.134, No 4. - P. 103-114.
Serraj, R. Accumulation of g-aminobutyric acid in nodulated soybean in response to drought stress / R. Serraj, B.J. Shelp, T.R. Sinclair // Physiologia Plantarum. - 1998. - V. 102, No 1. - P. 79-86.
Shelp, B.J. Metabolism and functions of gamma-aminobutyric acid / B.J. Shelp, A.W. Bown, M.D. McLean // Trends in Plant Science. - 1999. - V. 4, No 11. - P. 446-452.
Sudachkova, N.E. Influence of water deficit on contents of carbohydrates and nitrogenous compounds in Pinus sylvestris L. and Larix sibirica Ledeb. Tissues / N.E. Sudachkova, I.L. Milyutina, G.P. Semenova // Eurasian J. For. Res. - 2002. - V. 4. - P. 1-11.
Synge, R.L.M. Occurence in plants of amino acid resudes chemically bound other-wise than in proteins / R.L.M. Synge // Ann. rev. plant physiol. -1968.- V. 19. -P. 113-136
Zhu, X. The catabolic function of the a-aminoadipic acid
pathway in plants is associated with unidirectional activity of lysine-oxoglutarate reductase, but not saccharopine dehydrogenase / X. Zhu, G. Tang, G. Galili // Biochem. J. - 2000. - V. 351, No 1. - P. 215-220.
Zimmerli, L. (beta) – Aminobutyric acid – induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea / L. Zimmerli, J.P. Metraux, B. Mauch-Mani // Plant Physiol. - 2001. - V.126, No.2. - P. 517-527.
|